The Geometric Means in Banach x-Algebras
Bao Qi Feng

Dedicated to Professor Joe Diestel for his 60" birthday

ABSTRACT. The arithmetic-geometric-harmonic inequality has played
a special role in elementary mathematics. During the past twenty five
years (see [1], [2] and [8] etc.) a great many mathematicians have re-
searched on various kinds of matrix versions of the arithmetic-geometric-
harmonic inequality. In this article we will define the geometric means
of positive elements in Banach *-algebras and prove that the arithmetic-
geometric-harmonic inequality does hold in Banach x-algebras.
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1. INTRODUCTION

Let A be a Banach x-algebra. An element a € A is called sel f-adjoint if a* = a. A
is Hermitian if every self-adjoint element a of A has real spectrum: o(a) C R, where
o(a) denotes the spectrum of a. We assume in what follows that a Banach *-algebra A is
Hermitian. Also we assume that A is unital with unit 1. Saying an element a > 0 means
that a = a* and o(a) C [0,00). a > 0 means that « > 0 and 0 € o(a). Thus, a > 0
implies its inverse a™! exists. Denote the set of all invertible elements in A by Inv(A).
If a,b € A, then a,b € Inv(A) imply ab € Inv(A), and (ab)™! = b~'a™!. Saying a > b
means ¢ —b > 0, and a > b means a — b > 0. Shirali-Ford Theorem ([6] or [3], Theorem
41.5) asserted that a*a > 0 for every a € A. Based on Shirali-Ford Theorem, Okayasu [5],
Tanahashi and Uchiyama [7] proved the following inequalities:

(1) If a,b € A, then a >0, b >0 imply a + b > 0, with a > 0 implies aa > 0.
(2) If a,b € A, then a > 0, b > 0 imply a + b > 0.
(3) If a,b € A, then either a > b >0, or a > b > 0 imply a > 0.
(4) If @ > 0, then a™* > 0.
(5) If ¢ > 0, then 0 < b < a if and only if cbe < cac; Also 0 < b < a if and only if
cbe < cac.
(6) f0<a<1,then1<al.
(M If0<b<a,then0<a'<b';Alsoif 0<b<a,then0<at <bl

Also, Okayasu [5] showed that the following Lowner-Heinz inequality still holds in
Banach *-algebras:



Theorem Let A be a unital Hermitian Banach x-algebra with continuous involution.
Let a,b € A and p € [0,1]. Then a? > b? if a > b, and a? > b” if a > b.

It is natural to ask if there is an arithmetic-geometric-harmonic means inequality in
Banach x-algebras?

In this paper, we will address this problem.

2. THE LAWS OF EXPONENTS

Let a € A and a > 0, then 0 ¢ o(a) and the fact of o(a) being nonempty compact
subset of C implies that

inf{z:z€0(a)} >0 and sup{z : z € o(a)} < occ.

Choose 7 to be a closed rectifiable curve in {Re z > 0}, the right half open plane of the
complex plane, such that o(a) C ins 7, the inside of . Let G be an open subset of C with
o(a) C G. If f: G — C is analytic, we define an element f(a) in A by

fla) = 5 / f(2)(z — a) .

It is known (see [4], p.201 - p.204) that f(a) does not depend on the choice of v and the
Spectral Mapping Theorem:

holds.

For any o € R, we define

1 1
a_ - a(s o) ld
a 5 7z(z a) dz

where z% is the principal a-power of z. Since A is a Banach x-algebra, a® € A. Since 2“
is analytic in {Re z > 0}, by the Spectral Mapping Theorem

o(a®) = (o(a)*={2":z€ 0(a)} C (0,00).
Thus, we have

Lemma 1l If 0 <a € A and a € R, then a“ € A with a® > 0.

Moreover, one of the laws of exponents holds in Banach *-algebras.

Lemma 2 If 0 <a € A and o, 3 € R, then a®a® = a**P.



Proof Let v be defined as in the discussion preceding lemma 1. It is known that ([4],
VII. 4.7. Riesz Functional Calculus) that the map

f e fla) = %/f(z)(z o)l

of Hol(a) — A is an algebra homomorphism, where Hol(a) = all of the functions that are
analytic in a neighborhood of o(a). That is, f(a)g(a) = (fg)(a). Moreover, 2928 = 2o+
holds for principal powers of z implies that

1 1
aa’ = — [ 2Pz —a)Vde = — | 2*F(z —a)Vdz = a* TP,
27 J, 2mi ),

Lemma 3 If 0 <a € A and a € R, then (a®)™' = (a™H)* =a™
Proof Note that a” =1 ([3], Lemma 1, p.31), and from Lemma 2 we have
a“a® = a9 = g0 = 1.
By the uniqueness of the inverse of an element in A, (a®)™! = a™°.
Next we want to verify that (a™1)* = a=*. We know that a > 0 implies that
inf{z:ze€0o(a)} >0 and sup{z : z € o(a)} < oc.

Choose positive real numbers r; and 7, such that

0<r <inf{z:z€oa(a)}, ro >sup{z:z€o(a)}

and . .
> sup{z: z € o(a)}, 0< - < inf{z: z € o(a)}.

1 2

Let v be a closed rectifiable curve in {Re z > 0}, which passes r; and 7, and such that
o(a) C ins . Then the curve = = {7 : z € 7} is also a closed rectifiable with o(a) C ins =

and £ C {Re z > 0}. Thus,
v

1
-1 —1y-1
a o _ d
(™) o ’Yz (z—a ) dz
1 1\
= — [ 2 (a — —) Y4z
2mi ), z z
a —a—1 -1 e 1
= — [ A (A —a)"dA Substituting : A = —
2w J1 z
= aa *t=a" (Lemma 2)



Lemma4 [f 0<a€ A, 0<be A, «,3€R, and ab = ba, then a®b’ = b’a”.

Proof Suppose that z € o(a), then ab = ba = (2 —a)b =b(z —a) = b(z —a)™! =
(2 — a)~'b. Let v be defined as in the discussion preceding lemma 1. Then

1 1
a“b = <— /zo‘(z - a)ldz> b=— [ 2%(z —a) 'bdz
2mi ), 2mi ),

1 1
=— [ 2°b(z —a) 'dz=1b <— / 2%(z — a)_ldz) = ba”.
gl

27 - 21

Thus,
ab =ba = a®b = ba® = a®V’ = 1’a”.

3. THE ARITHMETIC MEAN, GEOMETRIC MEAN AND HARMONIC MEAN

Naturally, for a, b € A, and wy, wy are positive numbers summing to 1, their weighted
arithmetic mean can be defined as

Ay(a,b) == wia + wobd.
If a >0, b> 0, their weighted harmonic mean can be defined as
Hy(a,b) = (wia™ " + wgb_l)f1 .

From the point view of matrix analysis (see [1]), if a > 0, b > 0, and w;, wq are positive
numbers summing to 1, their weighted geometric mean can be defined as

Gola,b) := b2 (b 2ab 2)" .

Denote A,(a,b), Gy(a,b) and Hy,(a,b) by A(a,b), G(a,b) and H(a,b) respectively if
1

wy, = wy = 5. It is clear that A,(a,b), Gu(a,b), Hy(a,b) € A and Hy(a,b) > 0

and G, (a,b) > 0 by inequalities (2), (4), (5) and Lemma 1 above. Does the following
arithmetic-geometric-harmonic inequalities hold

Hy,(a,b) < Gy(a,b) < Ay(a,b)

in Banach *-algebras?

Based on the lemmas above we can prove some properties of arithmetic mean, geo-
metric mean and harmonic mean mentioned by Ando [1].

Theorem 1 Suppose that a, b € A with a >0, b > 0, then

H(a,b) = H(b,a) and  G(a,b) = G(b,a).



Proof H(a,b) = H(b,a) follows the definition of the harmonic mean and the fact that
A is an Abelian group.

Observe that G(a,b) = G(b,a) is equivalent to

= (a‘éba_;)é .

Since positive elements are equal if and only if their squares are equal (see [7], Lemma 6),
using Lemma 2 this is in turn equivalent to

[SIE

1
a 3vt (b dabd) " bha

a bt (bHa ) ohated] (bHab ) bhat = atba .

1
Since the term in square brackets is just b=2ab~2 by Lemma 3, the left hand side

of the expression above does indeed reduce to the right hand side when we use Lemma 2

again. 0

Theorem 2 Suppose that a, b, ¢ € A with a >0, b > 0 and ¢ € Inv(A), then
c*H(a,b)c = H(c*ac, ¢'bc)  and  ¢*G(a,b)c = G(c"ac, c*be).

Proof Since ¢ € Inv(A), ¢! exists. Hence

1 1o\ 1 1 -
c*H(a,b)c = c" (§a1 + 561) c= (cl <§a1 + 561) (c*)1>

1 1 e 1 -
= (iclal(c*)1 + 561[)1(6*)1) = <§(c*ac)1 + §(c*bc)1> = H(c*ac,c*be).

It is Analogous with the proof of Theorem 1, we now verify the second equality.

c*G(a,b)c = G(c*ac, c*be)

[NIES

= b2 (b‘é@b_é)é bic = (c*bc)% ((c*bc)f (c*ac) (c*bc)éf (c*bc)%

1

= ((c*bc)f >2

)2 = (¢*be) % (c*ac) (c*be) 2 .

[SIE
N|=
D=

= (c*bc)f% b2 <b_%ab_%> *bac (c"be)™ (c*ac) (c*be)™

1

= ((c*bc)é *bz (l)_ial)_%>§ b%c(c*bc)f

[NIES
[NIES



The last equality is true, since by Lemma 2
((c*bc)é b2 <b_%ab_%

1
- ((C*bc)—éc*bé <b7%ab7%) béc(c*bc)—%> ((C*bc)—ic*bé <b’%ab’%>2b§c(0*b0)_
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Theorem 3 Suppose that a, b € A with a > 0, b > 0. Then
Hy(a,b) ™' = Ay(a,07Y)  and  Gula 07! = Gyla, b))~

Proof The first equality is obvious from its definitions. Using Lemma 2 and Lemma 3,
we have

Gula™ b7 = () () et 7)) )

O

Theorem 4 Suppose that a, b € A with a > 0, b > 0, and wy,wy are positive numbers
summing to 1, then
Hy(a,b) < Gyla,b) < Ay(a,b).

Proof Firstly we verify the arithmetic-geometric means inequality: G, (a,b) < A,(a,b).
With the help of inequality (5),



b) < Au(a,b)

Gu(a,
b2 (b 2ab 2)"1b2 < wya + wob
b3 (b~2ab —*ywbz<:ba(UJb-aab-%4-u@)b%

w\»—‘
m\»-‘

M\H

(b~ 2gb )“Jl < wib 2ab 2 4 w,

win + wy — n*t > 0,

MM

where n := b~2ab™2. Lemma 1 and inequality (5) imply n > 0, and hence o (n) C (0, ).

Let f(2) = wiz+wy— 2", where z*! is the principal of the power function. Then f(z)
is analytic in the right half open plane {Re z > 0} of the complex plane. Next we claim
that f(z) > 0 on the positive real line. In fact, let x = z — 1 in the Bernoulli inequality:

(I+2)" <1+ wz, if 0<w; <1 and —1<ux.

We have
2 <wiz+ (1 —wy), if 0<w; <1 and 0< z,

that is,
f(z) >0, if 0<w; <1 and 0< z.

The Spectral Mapping Theorem implies

o(f(n)) = f(a(n)) C[0,00).

So
f(n) =win+wy, —n*t > 0.

Hence
Gu(a,b) < Ay(a,b).

Replacing a and b by a™! and b™! respectively in the arithmetic-geometric means inequal-
ity, Theorem 3 and inequality (7) guarantees that

Hy(a,b) < Gy(a,b).

O

In general, for ay,as,...,a, € A, and an n-tuple of positive numbers wy, ws, ..., w,
are summing to 1, their weighted arithmetic mean in A can be defined as

Ay(ay,ag, ... a,) = wia; + weag + -+ - + Wyay,.
If a; > 0, 1 <4 < n, their weighted harmonic mean in A can be defined as

L -1 -1 —-1\—1
Hy(ar,a9,. .. a,) == (wia]" +weay " + -+ +wyay')

7



From the point of view of matrix analysis (see [8]), if a; > 0, 1 <i < n, and wy,...,w,
are positive numbers summing to 1, their weighted geometric mean in A can be defined
as

1 1 1 1 1 1 1 1 1 1 1 1
(., T2,2 ~3,2(, "2, o T2\01,2, 2\az 2 T3\an—1,2
Gul(ar,ag, ... a,) = alk(an?a2_y - (a3%ad(ay2aray ?)* ajag 2)* -+ a2 _ja,?)"" tad,
i+1
where a; =1 — [ w1 / Y w; | fori =1,...,n — 1. Note that this geometric mean is
Jj=1

just the inductive generalization of n = 2 case, which was discussed in Theorem 3 and 4.

Based on Theorem 4 with the same inductive proof in [8], we have

Theorem 5 Suppose that a; € A, 1 <i <n, witha; >0, 1 <t <mn, and wy,...,w, are
positive numbers summing to 1, then

Hy(ay, ... a,) < Gylag,...,a,) < Ap(ag, ... a,).
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