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Abstract. The arithmetic-geometric-harmonic inequality has played
a special role in elementary mathematics. During the past twenty five
years (see [1], [2] and [8] etc.) a great many mathematicians have re-
searched on various kinds of matrix versions of the arithmetic-geometric-
harmonic inequality. In this article we will define the geometric means
of positive elements in Banach ∗-algebras and prove that the arithmetic-
geometric-harmonic inequality does hold in Banach ∗-algebras.
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1. Introduction

Let A be a Banach ∗-algebra. An element a ∈ A is called self -adjoint if a∗ = a. A
is Hermitian if every self-adjoint element a of A has real spectrum: σ(a) ⊂ R, where
σ(a) denotes the spectrum of a. We assume in what follows that a Banach ∗-algebra A is
Hermitian. Also we assume that A is unital with unit 1. Saying an element a ≥ 0 means
that a = a∗ and σ(a) ⊂ [0,∞). a > 0 means that a ≥ 0 and 0 6∈ σ(a). Thus, a > 0
implies its inverse a−1 exists. Denote the set of all invertible elements in A by Inv(A).
If a, b ∈ A, then a, b ∈ Inv(A) imply ab ∈ Inv(A), and (ab)−1 = b−1a−1. Saying a ≥ b
means a− b ≥ 0, and a > b means a− b > 0. Shirali-Ford Theorem ([6] or [3], Theorem
41.5) asserted that a∗a ≥ 0 for every a ∈ A. Based on Shirali-Ford Theorem, Okayasu [5],
Tanahashi and Uchiyama [7] proved the following inequalities:

(1) If a, b ∈ A, then a ≥ 0, b ≥ 0 imply a + b ≥ 0, with α ≥ 0 implies αa ≥ 0.
(2) If a, b ∈ A, then a > 0, b ≥ 0 imply a + b > 0.
(3) If a, b ∈ A, then either a ≥ b > 0, or a > b ≥ 0 imply a > 0.
(4) If a > 0, then a−1 > 0.
(5) If c > 0, then 0 < b < a if and only if cbc < cac; Also 0 < b ≤ a if and only if

cbc ≤ cac.
(6) If 0 < a < 1, then 1 < a−1.
(7) If 0 < b < a, then 0 < a−1 < b−1; Also if 0 < b ≤ a, then 0 < a−1 ≤ b−1.

Also, Okayasu [5] showed that the following Löwner-Heinz inequality still holds in
Banach ∗-algebras:
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Theorem Let A be a unital Hermitian Banach ∗-algebra with continuous involution.
Let a, b ∈ A and p ∈ [0, 1]. Then ap > bp if a > b, and ap ≥ bp if a ≥ b.

It is natural to ask if there is an arithmetic-geometric-harmonic means inequality in
Banach ∗-algebras?

In this paper, we will address this problem.

2. The laws of exponents

Let a ∈ A and a > 0, then 0 6∈ σ(a) and the fact of σ(a) being nonempty compact
subset of C implies that

inf{z : z ∈ σ(a)} > 0 and sup{z : z ∈ σ(a)} < ∞.

Choose γ to be a closed rectifiable curve in {Re z > 0}, the right half open plane of the
complex plane, such that σ(a) ⊂ ins γ, the inside of γ. Let G be an open subset of C with
σ(a) ⊂ G. If f : G → C is analytic, we define an element f(a) in A by

f(a) =
1

2πi

∫

γ

f(z)(z − a)−1dz.

It is known (see [4], p.201 - p.204) that f(a) does not depend on the choice of γ and the
Spectral Mapping Theorem:

σ(f(a)) = f(σ(a))

holds.

For any α ∈ R, we define

aα =
1

2πi

∫

γ

zα(z − a)−1dz

where zα is the principal α-power of z. Since A is a Banach ∗-algebra, aα ∈ A. Since zα

is analytic in {Re z > 0}, by the Spectral Mapping Theorem

σ(aα) = (σ(a))α = {zα : z ∈ σ(a)} ⊂ (0,∞).

Thus, we have

Lemma 1 If 0 < a ∈ A and α ∈ R, then aα ∈ A with aα > 0.

Moreover, one of the laws of exponents holds in Banach ∗-algebras.

Lemma 2 If 0 < a ∈ A and α, β ∈ R, then aαaβ = aα+β.
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Proof Let γ be defined as in the discussion preceding lemma 1. It is known that ([4],
VII. 4.7. Riesz Functional Calculus) that the map

f 7→ f(a) =
1

2πi

∫

γ

f(z)(z − a)−1dz

of Hol(a) → A is an algebra homomorphism, where Hol(a) = all of the functions that are
analytic in a neighborhood of σ(a). That is, f(a)g(a) = (fg)(a). Moreover, zαzβ = zα+β

holds for principal powers of z implies that

aαaβ =
1

2πi

∫

γ

zαzβ(z − a)−1dz =
1

2πi

∫

γ

zα+β(z − a)−1dz = aα+β.

Lemma 3 If 0 < a ∈ A and α ∈ R, then (aα)−1 = (a−1)α = a−α.

Proof Note that a0 = 1 ([3], Lemma 1, p.31), and from Lemma 2 we have

aαa−α = aα+(−α) = a0 = 1.

By the uniqueness of the inverse of an element in A, (aα)−1 = a−α.

Next we want to verify that (a−1)α = a−α. We know that a > 0 implies that

inf{z : z ∈ σ(a)} > 0 and sup{z : z ∈ σ(a)} < ∞.

Choose positive real numbers r1 and r2 such that

0 < r1 < inf{z : z ∈ σ(a)}, r2 > sup{z : z ∈ σ(a)}
and

1

r1

> sup{z : z ∈ σ(a)}, 0 <
1

r2

< inf{z : z ∈ σ(a)}.
Let γ be a closed rectifiable curve in {Re z > 0}, which passes r1 and r2 and such that
σ(a) ⊂ ins γ. Then the curve 1

γ
= {1

z
: z ∈ γ} is also a closed rectifiable with σ(a) ⊂ ins 1

γ

and 1
γ
⊂ {Re z > 0}. Thus,

(a−1)α =
1

2πi

∫

γ

zα(z − a−1)−1dz

=
1

2πi

∫

γ

zα

(
a− 1

z

)−1
a

z
dz

=
a

2πi

∫
1
γ

λ−α−1(λ− a)−1dλ

(
Substituting : λ =

1

z

)

= aa−α−1 = a−α. (Lemma 2)
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Lemma 4 If 0 < a ∈ A, 0 < b ∈ A, α, β ∈ R, and ab = ba, then aαbβ = bβaα.

Proof Suppose that z 6∈ σ(a), then ab = ba =⇒ (z − a)b = b(z − a) =⇒ b(z − a)−1 =
(z − a)−1b. Let γ be defined as in the discussion preceding lemma 1. Then

aαb =

(
1

2πi

∫

γ

zα(z − a)−1dz

)
b =

1

2πi

∫

γ

zα(z − a)−1bdz

=
1

2πi

∫

γ

zαb(z − a)−1dz = b

(
1

2πi

∫

γ

zα(z − a)−1dz

)
= baα.

Thus,
ab = ba =⇒ aαb = baα =⇒ aαbβ = bβaα.

3. The arithmetic mean, geometric mean and harmonic mean

Naturally, for a, b ∈ A, and w1, w2 are positive numbers summing to 1, their weighted
arithmetic mean can be defined as

Aw(a, b) := w1a + w2b.

If a > 0, b > 0, their weighted harmonic mean can be defined as

Hw(a, b) :=
(
w1a

−1 + w2b
−1

)−1
.

From the point view of matrix analysis (see [1]), if a > 0, b > 0, and w1, w2 are positive
numbers summing to 1, their weighted geometric mean can be defined as

Gw(a, b) := b
1
2 (b−

1
2 ab−

1
2 )w1b

1
2 .

Denote Aw(a, b), Gw(a, b) and Hw(a, b) by A(a, b), G(a, b) and H(a, b) respectively if
w1 = w2 = 1

2
. It is clear that Aw(a, b), Gw(a, b), Hw(a, b) ∈ A and Hw(a, b) > 0

and Gw(a, b) > 0 by inequalities (2), (4), (5) and Lemma 1 above. Does the following
arithmetic-geometric-harmonic inequalities hold

Hw(a, b) ≤ Gw(a, b) ≤ Aw(a, b)

in Banach ∗-algebras?

Based on the lemmas above we can prove some properties of arithmetic mean, geo-
metric mean and harmonic mean mentioned by Ando [1].

Theorem 1 Suppose that a, b ∈ A with a > 0, b > 0, then

H(a, b) = H(b, a) and G(a, b) = G(b, a).
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Proof H(a, b) = H(b, a) follows the definition of the harmonic mean and the fact that
A is an Abelian group.

Observe that G(a, b) = G(b, a) is equivalent to

a−
1
2 b

1
2

(
b−

1
2 ab−

1
2

) 1
2
b

1
2 a−

1
2 =

(
a−

1
2 ba−

1
2

) 1
2
.

Since positive elements are equal if and only if their squares are equal (see [7], Lemma 6),
using Lemma 2 this is in turn equivalent to

a−
1
2 b

1
2

(
b−

1
2 ab−

1
2

) 1
2
[
b

1
2 a−1b

1
2

] (
b−

1
2 ab−

1
2

) 1
2
b

1
2 a−

1
2 = a−

1
2 ba−

1
2 .

Since the term in square brackets is just
(
b−

1
2 ab−

1
2

)−1

by Lemma 3, the left hand side

of the expression above does indeed reduce to the right hand side when we use Lemma 2
again.

Theorem 2 Suppose that a, b, c ∈ A with a > 0, b > 0 and c ∈ Inv(A), then

c∗H(a, b)c = H(c∗ac, c∗bc) and c∗G(a, b)c = G(c∗ac, c∗bc).

Proof Since c ∈ Inv(A), c−1 exists. Hence

c∗H(a, b)c = c∗
(

1

2
a−1 +

1

2
b−1

)−1

c =

(
c−1

(
1

2
a−1 +

1

2
b−1

)
(c∗)−1

)−1

=

(
1

2
c−1a−1(c∗)−1 +

1

2
c−1b−1(c∗)−1

)−1

=

(
1

2
(c∗ac)−1 +

1

2
(c∗bc)−1

)−1

= H(c∗ac, c∗bc).

It is Analogous with the proof of Theorem 1, we now verify the second equality.

c∗G(a, b)c = G(c∗ac, c∗bc)

⇐⇒ c∗b
1
2

(
b−

1
2 ab−

1
2

) 1
2
b

1
2 c = (c∗bc)

1
2

(
(c∗bc)−

1
2 (c∗ac) (c∗bc)−

1
2

) 1
2
(c∗bc)

1
2

⇐⇒ (c∗bc)−
1
2 c∗b

1
2

(
b−

1
2 ab−

1
2

) 1
2
b

1
2 c (c∗bc)−

1
2 =

(
(c∗bc)−

1
2 (c∗ac) (c∗bc)−

1
2

) 1
2

⇐⇒
(

(c∗bc)−
1
2 c∗b

1
2

(
b−

1
2 ab−

1
2

) 1
2
b

1
2 c (c∗bc)−

1
2

)2

= (c∗bc)−
1
2 (c∗ac) (c∗bc)−

1
2 .
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The last equality is true, since by Lemma 2

(
(c∗bc)−

1
2 c∗b

1
2

(
b−

1
2 ab−

1
2

) 1
2
b

1
2 c (c∗bc)−

1
2

)2

=

(
(c∗bc)−

1
2 c∗b

1
2

(
b−

1
2 ab−

1
2

) 1
2
b

1
2 c (c∗bc)−

1
2

)(
(c∗bc)−

1
2 c∗b

1
2

(
b−

1
2 ab−

1
2

) 1
2
b

1
2 c (c∗bc)−

1
2

)

= (c∗bc)−
1
2 c∗b

1
2

(
b−

1
2 ab−

1
2

) 1
2
b

1
2 c (c∗bc)−1 c∗b

1
2

(
b−

1
2 ab−

1
2

) 1
2
b

1
2 c (c∗bc)−

1
2

= (c∗bc)−
1
2 c∗b

1
2

(
b−

1
2 ab−

1
2

) 1
2
(
b−

1
2 ab−

1
2

) 1
2
b

1
2 c (c∗bc)−

1
2

= (c∗bc)−
1
2 c∗b

1
2

(
b−

1
2 ab−

1
2

)
b

1
2 c (c∗bc)−

1
2

= (c∗bc)−
1
2 c∗ac (c∗bc)−

1
2 .

Theorem 3 Suppose that a, b ∈ A with a > 0, b > 0. Then

Hw(a, b)−1 = Aw(a−1, b−1) and Gw(a−1, b−1) = Gw(a, b)−1.

Proof The first equality is obvious from its definitions. Using Lemma 2 and Lemma 3,
we have

Gw(a−1, b−1) =
(
b−1

) 1
2

((
b−1

)− 1
2 a−1

(
b−1

)− 1
2

)w1 (
b−1

) 1
2

=
(
b

1
2

)−1
((

b−
1
2 ab−

1
2

)−1
)w1 (

b
1
2

)−1

=
(
b

1
2

(
b−

1
2 ab−

1
2

)w1

b
1
2

)−1

= Gw(a, b)−1.

Theorem 4 Suppose that a, b ∈ A with a > 0, b > 0, and w1, w2 are positive numbers
summing to 1, then

Hw(a, b) ≤ Gw(a, b) ≤ Aw(a, b).

Proof Firstly we verify the arithmetic-geometric means inequality: Gw(a, b) ≤ Aw(a, b).
With the help of inequality (5),
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Gw(a, b) ≤ Aw(a, b)

⇐⇒ b
1
2 (b−

1
2 ab−

1
2 )w1b

1
2 ≤ w1a + w2b

⇐⇒ b
1
2 (b−

1
2 ab−

1
2 )w1b

1
2 ≤ b

1
2

(
w1b

− 1
2 ab−

1
2 + w2

)
b

1
2

⇐⇒ (b−
1
2 ab−

1
2 )w1 ≤ w1b

− 1
2 ab−

1
2 + w2

⇐⇒ w1n + w2 − nw1 ≥ 0,

where n := b−
1
2 ab−

1
2 . Lemma 1 and inequality (5) imply n > 0, and hence σ(n) ⊂ (0,∞).

Let f(z) = w1z+w2−zw1 , where zw1 is the principal of the power function. Then f(z)
is analytic in the right half open plane {Re z > 0} of the complex plane. Next we claim
that f(z) ≥ 0 on the positive real line. In fact, let x = z − 1 in the Bernoulli inequality:

(1 + x)w1 ≤ 1 + w1x, if 0 < w1 < 1 and − 1 < x.

We have
zw1 ≤ w1z + (1− w1), if 0 < w1 < 1 and 0 < z,

that is,
f(z) ≥ 0, if 0 < w1 < 1 and 0 < z.

The Spectral Mapping Theorem implies

σ(f(n)) = f(σ(n)) ⊂ [0,∞).

So
f(n) = w1n + w2 − nw1 ≥ 0.

Hence
Gw(a, b) ≤ Aw(a, b).

Replacing a and b by a−1 and b−1 respectively in the arithmetic-geometric means inequal-
ity, Theorem 3 and inequality (7) guarantees that

Hw(a, b) ≤ Gw(a, b).

In general, for a1, a2, . . . , an ∈ A, and an n-tuple of positive numbers w1, w2, . . . , wn

are summing to 1, their weighted arithmetic mean in A can be defined as

Aw(a1, a2, . . . , an) := w1a1 + w2a2 + · · ·+ wnan.

If ai > 0, 1 ≤ i ≤ n, their weighted harmonic mean in A can be defined as

Hw(a1, a2, . . . , an) :=
(
w1a

−1
1 + w2a

−1
2 + · · ·+ wna−1

n

)−1
.
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From the point of view of matrix analysis (see [8]), if ai > 0, 1 ≤ i ≤ n, and w1, . . . , wn

are positive numbers summing to 1, their weighted geometric mean in A can be defined
as

Gw(a1, a2, . . . , an) := a
1
2
n (a

− 1
2

n a
1
2
n−1 · · · (a

− 1
2

3 a
1
2
2 (a

− 1
2

2 a1a
− 1

2
2 )α1a

1
2
2 a

− 1
2

3 )α2 · · · a
1
2
n−1a

− 1
2

n )αn−1a
1
2
n ,

where αi = 1 −
(

wi+1 /
i+1∑
j=1

wj

)
for i = 1, . . . , n − 1. Note that this geometric mean is

just the inductive generalization of n = 2 case, which was discussed in Theorem 3 and 4.

Based on Theorem 4 with the same inductive proof in [8], we have

Theorem 5 Suppose that ai ∈ A, 1 ≤ i ≤ n, with ai > 0, 1 ≤ i ≤ n, and w1, . . . , wn are
positive numbers summing to 1, then

Hw(a1, . . . , an) ≤ Gw(a1, . . . , an) ≤ Aw(a1, . . . , an).
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